Ultra High Precision Z-Foil Power Resistor in TO-220 Configuration with TCR of ± 0.05 ppm/°C, PCR of 4 ppm/W and Load Life Stability of ± 0.005 % (50 ppm)

INTRODUCTION

The Z-Foil Technology provides a significant reduction of the resistive component’s sensitivity to ambient temperature variations (TCR) and applied power changes (PCR).

VPR221Z provides high rated power, excellent load life stability, low Temperature Coefficient (TCR) and low Power Coefficient (PCR) - all in one resistor. ± 0.05 ppm/°C Absolute TCR removes error due to temperature gradients.

By taking advantage of the overall stability and reliability of Bulk Metal® Z-Foil resistors, designers can significantly reduce circuit errors and greatly improve overall circuit performances.

Model VPR221Z is a 4 lead kelvin connected device.

Our Application Engineering Department is available to advise and make recommendations. For non-standard technical requirements and special applications, please contact us.

FEATURES

- Temperature coefficient of resistance (TCR): ± 0.05 ppm/°C typical (0 °C to + 60 °C)
- ± 0.2 ppm/°C typical (- 55 °C to + 125 °C, + 25 °C ref.) (see table 1)
- Tolerance: ± 0.01 %
- Power coefficient “∂R due to self heating” 4 ppm/W typical
- Rated power: 8 W chassis mounted (MIL-PRF-39009)
- Load life stability: to ± 0.005 % at 25 °C for 2000 hours, at 1.5 W
- Resistance range: 0.5 Ω to 500 Ω
- Electrostatic discharge (ESD) above 25 000 V
- Short time overload ≤ 0.001 % (10 ppm)
- Non-inductive, non-capacitive design
- Rise time: 1 ns without ringing
- Current noise < - 40 dB
- Thermal EMF: 0.05 µV/°C typical
- Voltage coefficient < 0.1 ppm/V
- Non inductive: < 0.08 µH
- Non hot spot design
- Terminal finishes available: lead (Pb)-free tin/lead alloy
- Any value available within resistance range (e.g. 1K234)
- For better performances please contact us

APPLICATIONS

- Automatic test equipment (ATE)
- High precision instrumentation
- Electron beam application
- Current sensing applications
- Pulse applications
- Military
- Power amplifier
- Power supplies

TABLE 1 - TCR AND TOLERANCE

<table>
<thead>
<tr>
<th>RESISTANCE RANGE (Ω)</th>
<th>TIGHTEST RESISTANCE TOLERANCE</th>
<th>TYPICAL TCR AND MAX. SPREAD</th>
<th>TYPICAL TCR AND MAX. SPREAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 to < 1</td>
<td>± 0.05 %</td>
<td>± 0.2 ppm/°C ± 2.8 ppm/°C</td>
<td></td>
</tr>
<tr>
<td>1 to < 10</td>
<td>± 0.02 %</td>
<td>± 0.2 ppm/°C ± 2.3 ppm/°C</td>
<td></td>
</tr>
<tr>
<td>10 to 500</td>
<td>± 0.01 %</td>
<td>± 0.2 ppm/°C ± 1.8 ppm/°C</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. MIL-Range (- 55 °C to + 125 °C, + 25 °C Ref.)
 • Contact Applications Engineering for other available values

* Pb containing terminations are not RoHS compliant, exemptions may apply

For any questions, contact: foil@vishaypg.com
www.foilresistors.com

Revision: 25-Mar-10
VPR221Z (Z-Foil)

Vishay Foil Resistors

www.foilresistors.com For any questions, contact: foil@vishaypg.com

2 Revision: 25-Mar-10

FIGURE 2 - TRIMMING TO VALUES
(Conceptual Illustration)

Interloop Capacitance Reduction in Series

Current Path Before Trimming

Mutual Inductance Reduction due to Change in Current Direction

Current Path After Trimming

Trimming Process

Removes this Material from Shorning Strip Area

Changing Current Path and Increasing Resistance

Note: Foil shown in black, etched spaces in white

FIGURE 3 - TYPICAL TCR CURVE Z-FOIL
(for more details see table 1)

Ambient Temperature (°C)

ΔR R (ppm)

0.05 ppm/°C

0.1 ppm/°C

0.14 ppm/°C

- 0.1 ppm/°C

0.1 ppm/°C

0.2 ppm/°C

- 0.16 ppm/°C

- 0.2 ppm/°C

A surface mount version of this product is available see data sheets for VPR220S, VPR221S

FIGURE 4 - VPR221Z DIMENSIONS in inches (millimeters)

TABLE 2 - SPECIFICATIONS

Power Rating at + 25 °C

8 W or 3 A(2) on heat sink(3)
1.5 W in free air
Further derating not necessary.

Current Noise

< 0.010 µV (rms)/V of applied voltage (~ 40 dB)

High Frequency Operation

Rise Time
0.2 ns at 1 W

Inductance(4) (L)
0.1 µH maximum: 0.03 µH typical(1)
1.0 pF maximum: 0.5 pF typical(1)

Voltage Coefficient(5)

< 0.1 ppm/V

Operating Temperature Range

- 55 °C to + 150 °C

Maximum Working Voltage

300 V, Not to exceed power rating

Thermal EMF(6)

0.15 µV/°C maximum (lead effect)

Weight

1.2 g maximum

Notes

1. Maximum is 1.0 % A.Q.L. standard for all specifications except TCR.
2. Whichever is lower.
3. Heat sink chassis dimensions are requirements per MIL-R-39099/1B:
4. Inductance (L) mainly due to the leads.
5. The resolution limit of existing test requirement (within the measurement capability of the equipment, “essentially zero”).
6. µV/°C relates to EMF due to lead temperature difference.
TABLE 3 - PERFORMANCE SPECIFICATIONS\(^1\) MIL-PRF 39009

<table>
<thead>
<tr>
<th>TEST OR CONDITION</th>
<th>MIL-PRF 39009</th>
<th>TYPICAL (\Delta R)</th>
<th>MAXIMUM (\Delta R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low temperature storage 24 hours at - 55 °C</td>
<td>± 0.3 % + 0.01 Ω</td>
<td>± 0.001 % (10 ppm)</td>
<td>± 0.002 % (20 ppm)</td>
</tr>
<tr>
<td>Dielectric withstanding voltage 300 V AC at Atm</td>
<td>± 0.2 % + 0.01 Ω</td>
<td>± 0.001 % (10 ppm)</td>
<td>± 0.002 % (20 ppm)</td>
</tr>
<tr>
<td>Dielectric withstanding voltage 200 V AC at Brm</td>
<td>± 0.2 % + 0.01 Ω</td>
<td>± 0.001 % (10 ppm)</td>
<td>± 0.002 % (20 ppm)</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>> 10(^4) MΩ</td>
<td></td>
<td>> 10(^4) MΩ</td>
</tr>
<tr>
<td>Low temperature operation</td>
<td>± 0.3 % + 0.01 Ω</td>
<td>± 0.002 % (20 ppm)</td>
<td>± 0.008 % (80 ppm)</td>
</tr>
<tr>
<td>Short time overload 5 x rated power for 5 seconds (in air)</td>
<td>± 0.3 % + 0.01 Ω</td>
<td>± 0.001 % (10 ppm)</td>
<td>± 0.002 % (20 ppm)</td>
</tr>
<tr>
<td>Moisture resistance + 65 °C to - 10 °C, 90 to 98 Rh, 10 days</td>
<td>± 0.5 % + 0.01 Ω</td>
<td>± 0.005 % (50 ppm)</td>
<td>± 0.015 % (150 ppm)</td>
</tr>
<tr>
<td>Terminal Strength</td>
<td>± 0.2 % + 0.01 Ω</td>
<td>± 0.001 % (10 ppm)</td>
<td>± 0.002 % (20 ppm)</td>
</tr>
<tr>
<td>Load life 8 W at + 25 °C, 2000 hours with heat sink</td>
<td>± 1.0 % + 0.01 Ω</td>
<td>± 0.005 % (50 ppm)</td>
<td>± 0.015 % (150 ppm)</td>
</tr>
<tr>
<td>Load life 1.5 W at + 25 °C for 2000 hours in free air</td>
<td>± 1.0 % + 0.01 Ω</td>
<td>± 0.005 % (50 ppm)</td>
<td>± 0.015 % (150 ppm)</td>
</tr>
<tr>
<td>High temperature exposure + 150 °C</td>
<td>± 1.0 % + 0.05 Ω</td>
<td>± 0.005 % (50 ppm)</td>
<td>± 0.01 % (100 ppm)</td>
</tr>
</tbody>
</table>

Note
1. Measurement error ± 0.001 Ω

TABLE 4 - GLOBAL PART NUMBER INFORMATION

NEW GLOBAL PART NUMBER: Y1690420R220T9L (preferred part number format)

<table>
<thead>
<tr>
<th>DENOTES PRECISION</th>
<th>VALUE</th>
<th>AER*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>R = Ω</td>
<td>0 = standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 = lead (Pb)-free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 to 999 = custom</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRODUCT CODE</th>
<th>RESISTANCE TOLERANCE</th>
<th>PACKAGING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1690</td>
<td>T = ± 0.01 %</td>
<td>L = bulk pack</td>
</tr>
<tr>
<td></td>
<td>Q = ± 0.02 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A = ± 0.05 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B = ± 0.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C = ± 0.25 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D = ± 0.5 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F = ± 1.0 %</td>
<td></td>
</tr>
</tbody>
</table>

FOR EXAMPLE: ABOVE GLOBAL ORDER Y1690 420R220 T 9 L:
TYPE: VPR221Z
VALUE: 420.22 Ω
ABSOLUTE TOLERANCE: ± 0.01 %
TERMINATION: Lead (Pb)-free
PACKAGING: Bulk Pack

HISTORICAL PART NUMBER: VPR221Z T 420R22 TCR0.2 T B (will continue to be used)

<table>
<thead>
<tr>
<th>MODEL</th>
<th>TERMINATION</th>
<th>OHMIC VALUE</th>
<th>TCR CHARACTERISTIC</th>
<th>ABSOLUTE TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPR221Z</td>
<td>T</td>
<td>420R22</td>
<td>TCR0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>420.22 Ω</td>
<td>TCR0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
* For non-standard requests, please contact Application Engineering.
Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “VPG”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

The product specifications do not expand or otherwise modify VPG’s terms and conditions of purchase, including but not limited to, the warranty expressed therein.

VPG makes no warranty, representation or guarantee other than as set forth in the terms and conditions of purchase. To the maximum extent permitted by applicable law, VPG disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Information provided in datasheets and/or specifications may vary from actual results in different applications and performance may vary over time. Statements regarding the suitability of products for certain types of applications are based on VPG's knowledge of typical requirements that are often placed on VPG products. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. You should ensure you have the current version of the relevant information by contacting VPG prior to performing installation or use of the product, such as on our website at vpgsensors.com.

No license, express, implied, or otherwise, to any intellectual property rights is granted by this document, or by any conduct of VPG.

The products shown herein are not designed for use in life-saving or life-sustaining applications unless otherwise expressly indicated. Customers using or selling VPG products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify VPG for any damages arising or resulting from such use or sale. Please contact authorized VPG personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Copyright Vishay Precision Group, Inc., 2014. All rights reserved.